Wednesday, April 11, 2018

Europa Lander Being Redesigned for Lowering Cost

Revised concepts for a proposed Europa lander mission could reduce its mass and cost by simplifying its science requirements and doing away with a dedicated communications relay.

In a presentation at a meeting of the Committee on Astrobiology and Planetary Science of the National Academies March 28, Kevin Hand of the Jet Propulsion Laboratory said that feedback from a mission concept review for the proposed lander last June led to changes in the design to reduce its cost.

“The technology and science were well received. The marching orders that we got out of that review were to see if we could simplify the architecture to reduce complexity and cost,” he said. While there’s been little discussion of the lander’s cost, Hand said there was a “desire” to reduce its cost to below $3 billion.

The concept for the mission presented at that review involved the launch of the lander on a Space Launch System rocket no earlier than late 2025. The spacecraft would enter orbit around Jupiter in 2030 with a landing on Europa to follow no earlier than December 2031. The battery-powered lander would operate on the surface for at least 20 days, relying on a communications relay spacecraft in orbit to return data to Earth.

Hand said the project team looked at options to do away with the relay spacecraft by giving the lander a larger antenna to enable direct-to-Earth communications. That concept uses a flat-panel antenna 80 centimeters across, versus antenna smaller antennas 30 to 40 centimeters across intended for communications with the relay. One quadrant of that larger antenna has been built and tested at JPL, he said, with “encouraging” results.

Another factor that enables the change in design, he said, is a shift in the science requirements for the lander. A report by a science definition team last year had included, as one of the mission’s priorities, the ability of the lander’s instruments to directly detect any life that might exist in the moon’s icy surface.

No comments: